

Planeta Água: a cultura oceânica para enfrentar as mudanças climáticas no meu território

Speed.IFSC 2.0: Construção de uma unidade de controle eletrônico do motor

Elias Alves de Souza¹ | eliasalvessouza20@gmail.com Lucas Silva Yoshida² | lucas.yoshida@ifsc.edu.br Eduardo Batista Fontanella³ | eduardo.fontanella@ifsc.edu.br

RESUMO

O projeto SpeedIFSC 2.0 teve como objetivo desenvolver uma ECU programável de baixo custo para fins educacionais, ampliando a capacidade prática dos laboratórios de motores e eletrônica automotiva do IFSC. O produto foi construído manualmente, com componentes discretos, chicotes elétricos personalizados e estrutura física impressa em 3D, buscando oferecer uma alternativa acessível aos módulos comerciais de alto custo utilizados no setor automotivo. A montagem da placa incluiu processos de soldagem convencional e invertida. A placa encontra-se funcional, permitindo programação via USB, mas apresenta limitações práticas pois ainda está em desenvolvimento. O processo de montagem evidenciou desafios técnicos, especialmente na soldagem invertida. Apesar disso, possibilitou aos alunos o desenvolvimento de habilidades em eletrônica embarcada, montagem de sistemas automotivos e diagnóstico básico de ECUs. Os próximos passos incluem reposicionamento dos LEDs, blindagem do chicote, integração com simulador de sinais de motor e atualização do hardware para suporte a CAN, tornando o sistema mais robusto, didático e compatível com veículos modernos. A iniciativa reforça a integração entre ensino, pesquisa e extensão, preparando os discentes para desafios reais do setor automotivo e fortalecendo a autonomia técnica no ambiente educacional.

Palavras-chave: Injeção eletrônica; ECU; speeduíno.

Planeta Água: a cultura oceânica para enfrentar as mudanças climáticas no meu território

1 INTRODUÇÃO

O projeto SpeedIFSC 2.0: Calibrando Competências em Eletrônica Automotiva consiste no desenvolvimento de uma unidade de controle eletrônico (ECU) programável de baixo custo, destinada ao ensino e à pesquisa no campo da injeção eletrônica de motores a combustão. O objetivo principal é disponibilizar um recurso acessível para práticas laboratoriais, possibilitando a operação de motores instalados em gaiolas didáticas com custos significativamente inferiores aos sistemas comerciais.

A proposta busca ampliar a aprendizagem dos estudantes por meio de atividades práticas com os motores e explicações seguidas de experiências comprovatórias, e pode ser usado para ensinar o básico de um módulo automotivo devido a sua fácil construção. Devido à arquitetura aberta e flexível do sistema, a plataforma também poderá ser utilizada em pesquisas acadêmicas relacionadas ao mapeamento e ao desempenho de motores, favorecendo uma abordagem experimental e interdisciplinar.

O público-alvo desse projeto são professores, alunos e pesquisadores, no ensino ou pesquisa sobre motores, injeção eletrônica e ECU programável. Atualmente no mercado temos produtos similares a esse projeto por parte das empresas: Fueltech, Pro tune, MOTEC, Injepro, entre outras, as quais não são direcionadas ao ensino, sendo somente voltadas ao preparo de veículos especiais ou pesquisas também sobre motores e seus sistemas.

Este trabalho visa apresentar a parte construtiva do hardware do projeto SpeedIFSC 2.0 que ainda está em desenvolvimento.

2 METODOLOGIA

A construção do sistema foi dividida em duas etapas principais: montagem da placa Speeduíno e confecção do chicote elétrico com estrutura de suporte. Os componentes foram adquiridos desmontados e organizados por numeração, o que facilitou a identificação durante a montagem. Inicialmente, os itens foram separados por classe e tamanho. A ordem de soldagem priorizou os menores componentes para evitar interferências na instalação dos maiores. A soldagem foi feita na face superior da placa, exceto os LEDs, fixados na face inferior.

Após o chicote, os suportes para a placa foram fabricados em impressora 3D, usando parafusos para travar a placa em posição. Por último, o gabinete da placa recebeu dois recortes para passagem dos conectores que foram comprados e receberam o chicote da placa e do motor.

Planeta Água: a cultura oceânica para enfrentar as mudanças climáticas no meu território

2.1 Processo de montagem da placa

Os componentes chegaram em sacos separados por modelo, com numeração correspondente serigrafada na placa, agilizando o processo de instalação. Uma estação de solda com ferro de temperatura regulável e fio de estanho fino foi utilizada. Durante a montagem, foram aplicadas técnicas básicas de soldagem, como controle do fluxo de estanho e retrabalho com sugador em pontos mal executados. Essa etapa permitiu aprendizado prático sobre correção de erros e controle térmico. Após a soldagem, foi feita uma verificação geral para identificar componentes invertidos, faltantes ou mal fixados. A continuidade dos circuitos foi testada com multímetro para garantir integridade elétrica.

2.2 Processo de fabricação chicote

Foram utilizados fios nas cores cinza, vermelha, verde, azul, preta e amarela, com bitolas dimensionadas conforme a corrente de cada circuito. As linhas de 12 V e aterramento receberam fios mais espessos (dois vermelhos e um preto/azul, respectivamente). Cada fio foi cortado com 15 cm de comprimento, desencapado nas extremidades e recebeu conectores tipo espada macho de um lado e soldagem direta na placa do outro. Os conectores foram agrupados em dois conectores tipo ATX de tamanhos diferentes para evitar montagem invertida e reduzir custos.

Um chicote espelhado foi confeccionado para o lado do motor, com conectores fêmeas correspondentes. A fixação da placa foi feita em suportes impressos em 3D, com parafusos revestidos em borracha para absorver vibrações (Figura 1) Para a passagem dos conectores, recortes precisos foram feitos na caixa utilizando cortadora a laser e gabarito impresso em 3D.

Figura 1 – Placa instalada no gabinete com suporte e conectores

Fonte: Autores

Planeta Água: a cultura oceânica para enfrentar as mudanças climáticas no meu território

3 RESULTADOS E DISCUSSÃO

O protótipo desenvolvido está funcional, embora ainda apresente limitações relacionadas à praticidade e acabamento. Atualmente, a programação da placa exige conexão direta via cabo USB a um computador, o que restringe a mobilidade e dificulta o uso dinâmico em ambiente de oficina. Os LEDs indicadores, originalmente instalados na parte interna, ficam ocultos pela tampa opaca da caixa, reduzindo a visibilidade dos sinais de funcionamento. Como solução, está previsto o reposicionamento desses LEDs para a tampa externa, além da elaboração de um manual de instruções para orientar futuros usuários.

O tempo total de montagem foi de aproximadamente 24 horas de trabalho contínuo. Como todo o processo foi executado manualmente, observou-se alta suscetibilidade a erros humanos e variação na qualidade das soldas. A fragilidade estrutural também foi identificada como um ponto crítico: o equipamento, embora projetado para uso em bancada e ambientes técnicos, apresenta baixa resistência à umidade e impactos.

Durante o desenvolvimento, os alunos assimilaram procedimentos de soldagem convencional e invertida, identificação de componentes e práticas de instalação. A soldagem invertida foi identificada como a etapa de maior dificuldade técnica, demandando controle térmico e precisão manual. Para validação completa do funcionamento do módulo, será necessário integrá-lo a um simulador de sinais de motor, que permitirá verificar respostas da ECU de forma controlada antes da aplicação em motores reais.

REFERÊNCIAS

DROSESCU, Radu. Virtual engine management simulator for educational purposes. *IOP Conference Series: Materials Science and Engineering*, v. 252, n. 1, p. 012099, 2017. DOI: 10.1088/1757-899X/252/1/012099.

IRALDO, Arianna. Development of a prototype of an ECU in Arduino environment for didactical purposes. Master's Degree Thesis – Politecnico di Torino, Turin, 2022. Disponível em: https://webthesis.biblio.polito.it/23686/. Acesso em: 5 mar. 2025.

PHAM, Tuan Anh; TRAN, Ngoc Huy Thinh. Develop an ECU for controlling fuel injectors using Arduino and LabVIEW for training purposes. *Journal of Technical Education Science*, v. 78A, p. 73–83, ago. 2023. DOI: https://doi.org/10.54644/jte.78A.2023.1224.