

Planeta Água: a cultura oceânica para enfrentar as mudanças climáticas no meu território

Dose e Risco em Tomografia Computadorizada pediátrica: Métodos de Estimativa e Análise

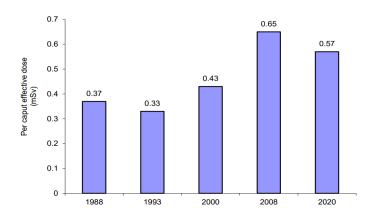
Florencia Agustina Perez Gutierrez 1 | florencia.g2001@aluno.ifsc.edu.br Daiane Cristini Barbosa De Souza 2 | daiane.cristini@ifsc.edu.br Marcos Araquem Scopel 3 | scopel@ifsc.edu.br

RESUMO

A TC é um exame complementar que utiliza a radiação ionizante para aquisição de imagens e tem grande utilidade para detecção e acompanhamento de diversas doenças. As indicações da realização de exames de TC cresceram por conta dos avanços na tecnologia, qualidade do exame e rápida aquisição da imagem, dessa forma, aumentando consequentemente a exposição à radiação. De acordo com a versão mais recente do Relatório do Biological Effects Ionizing Radiation (BEIR VII), embora as doses de um único exame de TC seja tipicamente baixa, há uma crescente preocupação de que populações de pacientes pediátricos, que podem necessitar de exames repetidos, podem receber doses cumulativas relativamente altas. A TC é frequentemente solicitada para avaliação de Traumatismo Crânio encefálico (TCE) hidrocefalia, entre outras condições, dessa forma, apesar de existir uma preocupação na exposição à radiação em pacientes adultos, quando se trata de pacientes pediátricos há uma preocupação maior, por conta de maior radiossensibilidade dos órgãos à radiação ionizante e do risco de desenvolvimento de câncer ao longo da vida. Dessa forma, o objetivo deste estudo é realizar a estimativa das doses em órgão e risco de desenvolvimento de malignidades ao longo da vida em pacientes pediátricos que realizaram exames de TC no protocolo de crânio, compreender o uso da TC na avaliação de patologias cranioencefálicas e o uso das tecnologias empregadas para estimar as doses e análise de risco de câncer ao longo da vida em um hospital público do sul do país.

Palavras-chave: Tomografia Computadorizada; Exposição à radiação; Pediatria; Risco Atribuível à Exposição.

Planeta Água: a cultura oceânica para enfrentar as mudanças climáticas no meu território



1 INTRODUÇÃO

De acordo com a versão mais recente do Relatório do Biological Effects Ionizing Radiation (BEIR VII), embora as doses de um único exame de TC seja tipicamente baixa, há uma crescente preocupação de que populações de pacientes pediátricos, que podem necessitar de exames repetidos, podem receber doses cumulativas relativamente altas. Assim, doses acumuladas ao longo das exposições podem resultar no aumento do risco de incidência de câncer ao longo da vida (BEIR, 2006). A TC é frequentemente solicitada para avaliação de Traumatismo Crânio encefálico (TCE) hidrocefalia, entre outras condições, com isso, apesar de existir uma preocupação na exposição à radiação em pacientes adultos, quando se trata de pacientes pediátricos há uma preocupação maior, por conta de maior radiossensibilidade dos órgãos à radiação ionizante e do risco de desenvolvimento de câncer ao longo da vida (Miyagawa et al.2023). De acordo com a Unscear.2020, as doses efetivas coletivas sofreram uma queda acentuada em 2020, comparado com 2008, além disso, exames de TC representam 62% das doses efetivas coletivas. A figura 1 representa um gráfico das doses efetivas anuais per capita de diferentes avaliações de exposição médica.(Unscear.2020)

Figura 1 – Dose efetiva anual per capita de diferentes avaliações de exposição médica

Fonte:Unscear, 2020/2021.

Além da estimativa de dose, segundo Berrington de González et al. (2012), a análise do risco de câncer pode ser realizada por meio da ferramenta de avaliação de risco online RadRAT, desenvolvida pelo Instituto Nacional do Câncer dos Estados Unidos, modelos de risco usados no RadRAT são amplamente baseados naqueles desenvolvidos pelo comitê BEIR VII para estimar o risco após a exposição a baixas doses de radiação para a população dos EUA, para onze tipos de câncer específicos do local.

Planeta Água: a cultura oceânica para enfrentar as mudanças climáticas no meu território

2 METODOLOGIA

Dados de 864 exames foram coletados de forma manual no serviço participante, dos quais 185 dados foram excluídos por não atenderem aos critérios de inclusão. Apenas 237 equivalem ao número de pacientes totais, pois 1 paciente realizou em média 3 exames, sendo 2 Scout. A faixa etária da coleta foi de (0-15 anos) no período de março/julho de 2025 em um hospital infantil de grande porte localizado na região Sul do país. Além disso foram coletados os dados secundários da amostra de estudo (idade, sexo, peso, altura), e dados dos exames - parâmetros técnicos utilizados na realização comprimento de varredura quilovoltagem $(CTDI_{vol},$ DLP, miliamperagem-segundos (mAs), pitch, colimação, tempo de rotação do tubo, algoritmo de reconstrução utilizado). Após a tabulação dos dados, as tabelas foram inseridas nos softwares NCICT® WAZA-ARI® e RadRat® para estimar as doses em órgão (mGy) e dose efetiva (mSv) para cada exame/paciente. Foram excluídos desta pesquisa exames de pacientes adultos, idosos ou com dados incompletos. Além disso, a utilização de ferramentas como o Microsoft Excel, Jamovi e Google Sheets também foram utilizados. Conforme a figura 2, é exemplificado as etapas desta pesquisa.

Figura 2 – Fluxograma das etapas desta pesquisa

Fonte: A autora, 2025.

3 RESULTADOS ESPERADOS

Os resultados deste estudo são parciais e se encontram em fase de análise. Dados de 237 pacientes foram inseridos no RadRAT[®]. É possível destacar que para exames de protocolo de crânio, estima-se que a cavidade oral e faringe sejam as regiões com maior risco de desenvolvimento de malignidades. O objetivo geral desta pesquisa é coletar e desenvolver uma banco de dados provenientes dos dados secundários coletados no serviço participante de exames radiológicos pediátricos mais frequentes do serviço participante. Determinar as doses efetivas, dose em órgãos e estimar o risco associado à exposição médica decorrentes de exames de TC por meio dos softwares de estimativa de dose. Além disso, também foram inseridos os dados coletados no NCICT[®]e WAZA-ARI[®]com a finalidade de estimar e comparar as doses.

Planeta Água: a cultura oceânica para enfrentar as mudanças climáticas no meu território

3 CONSIDERAÇÕES FINAIS

É possível destacar a variedade de pesquisas acerca da importância da otimização de dose em exames de TC, principalmente para pacientes pediátricos, por conta da radiossensibilidade dos órgãos a radiação e da possível necessidade de realização de exames repetitivos. Estudos como estes têm contribuído para que ocorra a devida justificativa do exame e a conscientização do risco de câncer proveniente da radiação ionizante. Ainda assim, nota-se a necessidade de abordar tal temática na radiologia brasileira.

4 FOMENTO

Os autores agradecem ao apoio financeiro do Governo do Estado de Santa Catarina realizado via **Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC)**, Edital 61/2024.

REFERÊNCIAS

UNITED NATIONS SCIENTIFIC COMMITTEE ON THE EFFECTS OF ATOMIC RADIATION. Levels and Effects of Radiation Exposure Due to the Accident at the Fukushima Daiichi Nuclear Power Station: Implications of Information Published Since the UNSCEAR 2013 Report. New York: United Nations, 2021. v. 2.

UNITED NATIONS SCIENTIFIC COMMITTEE ON THE EFFECTS OF ATOMIC RADIATION. Sources, effects and risks of ionizing radiation: UNSCEAR 2020/2021 Report, Annex A. New York: United Nations, 2022.

GONZÁLEZ, Amy Berrington de et al. RadRAT: A Radiation Risk Assessment Tool for Lifetime Cancer Risk Projection. Journal of Radiological Protection, [S. l.], v. 32, n. 1, p. N1-N4, mar. 2012.

MIYAGAWA, Tadashi et al. Statistical and machine learning approaches to predict the necessity for computed tomography in children with mild traumatic brain injury. Scientific Reports, [S. l.], v. 13, n. 1, 2023.

PURCELL, Laura; PERSSON, Erika; HOUGHTON, Kristin. Curb unnecessary computed tomography scans for pediatric concussions. Canadian Medical Association Journal, [S. l.], v. 194, n. 36, p. E1242–E1243, set. 2022.

BAKO, Derya; ÖZER, Utku; BEYDOğAN, Engin. Computed Tomography Overuse in Pediatric Minor Head Trauma: Insights from a Single-Center Experience. Pediatric Emergency Care, [S. l.], v. 40, n. 2, p. 89–94, fev. 2024.