

Planeta Água: a cultura oceânica para enfrentar as mudanças climáticas no meu território

DESENVOLVIMENTO DE UM FANTOMA ANTROPOMÓRFICO INFANTIL DE BAIXO CUSTO POR MEIO DE IMPRESSÃO EM 3D

Francieli Bernardo Ribeiro 1 | E-mail francieli.br@aluno.ifsc.edu.br Daiane Cristini Barbosa de Souza, Dra.1 | daiane.cristini@ifsc.edu.br Matheus Brum Marques Bianchi Savi, Dr.1 | matheus.savi@ifsc.edu.br

RESUMO

A otimização da proteção radiológica em exames de Tomografia Computadorizada (TC) pediátrica possui relevância devido à sensibilidade infantil à radiação e ao risco de efeitos a longo prazo, além de ser um dos princípios fundamentais e respaldado por normativas nacionais e internacionais. O monitoramento da exposição radiológica é frequentemente realizado por meio do uso de fantomas físicos que simulam a anatomia humana, conhecidos como antropomórficos. No entanto, a aquisição comercial destes fantomas é frequentemente de alto custo e os modelos disponíveis geralmente não cobrem todas as variações de tamanho corporal necessárias para a faixa pediátrica. Este projeto propõe como solução o desenvolvimento de um fantoma dosimétrico antropomórfico infantil por meio de impressão 3D, oferecendo uma alternativa de baixo custo que permita a criação de um modelo detalhado e personalizado. Os resultados esperados incluem o desenvolvimento de um fantoma a partir da edição de imagens tomográficas e posteriormente impresso por manufatura aditiva, visando replicar as características de uma criança de 5 anos e simular a interação com a radiação nos diferentes tecidos do corpo humano. Este projeto representa um passo significativo ao desenvolver uma ferramenta acessível e reprodutível para a simulação dosimétrica, com foco no avanço contínuo da proteção radiológica pediátrica.

Palavras-chave: Impressão Tridimensional; Fantomas de Imageamento; Manufatura Aditiva.

Planeta Água: a cultura oceânica para enfrentar as mudanças climáticas no meu território

1 INTRODUÇÃO

A Tomografia Computadorizada (TC) é uma ferramenta diagnóstica eficaz e amplamente utilizada, mas seu uso em crianças levanta preocupações significativas devido à exposição à radiação ionizante em organismos em desenvolvimento, no qual a taxa de crescimento infantil torna os tecidos mais radiossensíveis e a maior expectativa de vida aumenta o risco de possíveis efeitos prejudiciais tardios (IAEA, 2023; Sutil *et al.*, 2022; UNSCEAR, 2000).

Para atingir a otimização das doses de radiação em exames de TC, diversas estratégias são empregadas, incluindo o ajuste de parâmetros de exposição, a indicação clínica adequada, a implementação de níveis de referência diagnósticos e a realização de testes dosimétricos (Sutil *et al.*, 2022). A Associação Americana de Física Médica (AAPM, 2008) reforça que a forma mais direta de estimar as doses em pacientes submetidos a exames de TC é medir as doses em fantomas semelhantes aos pacientes.

Apesar da importância dos simuladores anatômicos, existem dificuldades quanto ao alto custo e a disponibilidade limitada dos modelos comerciais. Frequentemente, esses fantomas são projetados para corpos adultos de tamanho padrão, o que os torna inadequados para simular exames pediátricos em diferentes faixas etárias. Diante da inviabilidade de adquirir fantomas comerciais, a tecnologia de impressão tridimensional (3D) surge como uma alternativa para a sua fabricação (Kunert *et al.*, 2023).

Este projeto propõe, portanto, o desenvolvimento de um fantoma do tipo dosimétrico e de tamanho infantil por meio da impressão em 3D. O foco é garantir um método acessível e de baixo custo para a produção desta ferramenta, fundamental para contribuir com a otimização contínua da proteção radiológica na pediatria.

2 METODOLOGIA

Este projeto é de natureza quantitativa, investigativa e descritiva, se concentrando no desenvolvimento do fantoma a partir da tecnologia de impressão 3D.

A manufatura do fantoma dosimétrico se inicia com a aquisição de imagens em formato $DICOM^{\circledR}$ de um fantoma $ATOM^{\circledR}$ pediátrico (modelo de 5 anos), obtidas em parceria com o Instituto de Radioproteção e Dosimetria – IRD (imagem 1). Utilizando o software 3D Slicer $^{\circledR}$, as imagens são segmentadas para replicar estruturas anatômicas (ossos, órgãos), incluindo a simulação de diferentes densidades e atenuações à radiação similares às do corpo humano.

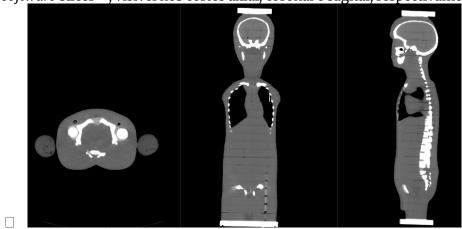

Planeta Água: a cultura oceânica para enfrentar as mudanças climáticas no meu território

Imagem 1 - Imagens tomográficas do fantoma ATOM® 5 anos, carregadas no *software* Slicer®, visível nos cortes axial, coronal e sagital, respectivamente.

Fonte: Autoria própria, 2025.

A impressão em 3D será conduzida no Laboratório de Manufatura Aditiva e Inovação em Saúde – LabMAIS do IFSC câmpus Florianópolis, utilizando filamentos à base de ABS (acrilonitrila butadieno estireno) para estruturas radiolúcidas e filamentos XCT para estruturas radiopacas. A abordagem de manufatura aditiva permite a criação de um fantoma de forma economicamente acessível.

3 RESULTADOS ESPERADOS

Os resultados esperados deste projeto demonstram o potencial de contribuir para o avanço da proteção radiológica pediátrica, enfatizando a viabilidade e o baixo custo da produção. A principal expectativa consiste no desenvolvimento e na validação de um fantoma dosimétrico e antropomórfico infantil, impresso em 3D, que simule com sucesso as características dos tecidos humanos. A solução proposta busca superar o alto custo e a baixa disponibilidade de modelos pediátricos comerciais, utilizando a tecnologia de manufatura aditiva para criar um modelo reprodutível e de baixo custo que pode ser utilizado como uma ferramenta objetiva para a avaliação e otimização dos protocolos de TC pediátrica.

4 CONSIDERAÇÕES FINAIS

Exames diagnósticos são ferramentas essenciais para a identificação e tratamento de doenças e condições de saúde no público infantil, onde cerca de 350 milhões, o que representa 4% de todos os procedimentos médicos de imagem realizados nos últimos dez anos, foram executados em crianças e adolescentes (SBP, 2018). Com essa grande demanda, torna-se necessário aprimorar os protocolos de imagem e a verificação de padrões de segurança de radiação em diferentes técnicas de

Planeta Água: a cultura oceânica para enfrentar as mudanças climáticas no meu território

imagem para garantir a proteção do público infantil. Com o uso de um fantoma projetado especificamente para o biotipo pediátrico, é possível avaliar o desempenho diagnóstico, otimizar protocolos de imagem e verificar padrões de segurança de radiação em diferentes técnicas de imagem (Ahmed *et al.*, 2024).

5 AGRADECIMENTOS

Os autores agradecem à Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC) pelo apoio financeiro fornecido por meio do edital FAPESC N.º 23/2025, a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pelo apoio financeiro concedido ao Mestrado Profissional em Proteção Radiológica (MPPR) por meio do Programa Pró-Equipamentos, ao Instituto de Radioproteção e Dosimetria (IRD) pelo fornecimento dos dados do fantoma, ao Laboratório de Manufatura Aditiva e Inovação à Saúde (LabMais) e ao IFSC câmpus Florianópolis.

REFERÊNCIAS

AAPM. AMERICAN ASSOCIATION OF PHYSICISTS IN MEDICINE. AAPM Report No. 96. The Measurement, Reporting, and Management of Radiation Dose in CT. Report of AAPM Task Group 23: CT Dosimetry. 2008.

AHMED, A.M.M. *et al.* Tailoring the Mass Density of 3D Printing Materials for Accurate X-ray Imaging Simulation by Controlled Underfilling for Radiographic Phantoms. Polymers. 2024.

IAEA. INTERNATIONAL ATOMIC ENERGY AGENCY. Safety Standards and Related Publications No 112. Vienna. 2023.

KUNERT P., *et al.* Reproduction of a conventional anthropomorphic female chest phantom by 3D-printing. Med Phys. 50: 4734–4743. 2023.

SBP. SOCIEDADE BRASILEIRA DE PEDIATRIA. Para evitar riscos de superexposição, SBP lança campanha para o uso racional de exames de diagnóstico por imagem em crianças e adolescentes. Sociedade Brasileira de Pediatria. 2018.

SUN NUCLEAR CORPORATION. ATOM® Phantom Family: Versatile Dosimetry Investigation & Verification. Sun Nuclear Corporation. 2025

SUTIL, M. R. *et al.* Dose estimation in pediatric CT scans using Virtual Dose® software. Research, Society and Development, v. 11, n. 5. 2022.

UNSCEAR. UNITED NATIONS SCIENTIFIC COMMITTEE ON THE EFFECTS OF ATOMIC RADIATION. Sources and Effects of Ionizing Radiation. Volume I. United Nations. 2000.